Catchment Management: a holistic, interventionist approach to catchment management

Dr Paul Quinn Caspar Hewett, Mark Wilkinson (JHI), Russell Adams, and Alex Nicholson (ARUP) Many thanks to my co-workers over the years, the Environment Agency and Arup

Pressures to increase Runon – see FDZ114 OF CIRIA

50 years of change

Intensive farming Changes in land use Mechanisation Field drainage Increased stocking rates Removal of field infrastructure Channel management Soil degradation

FD2114 - Review of Rural Land Use and Management on Flood Generation **CIRIA**- Land use management effects on flood flows and sediments – guidance on prediction

Tarland:

2011

Microscale Mechanics of Flood Generation

Catchment Systems Engineering: Belford Runoff Attenuatio

SLOW, STORE, FILTER ---For example, making buffer strips do more work

Belford NFM: Mitigation Explained

RAF types – Permeable timber barrier (RAF-6)

RAF types – Soil interception bund (RAF-11)

RAF types – Large Woody Debris (RAF-7)

RAF types – Ditches -Wooden Screens

What is the Impact of a Pond?

- Post change:
- Volume capacity = 560m3
- \cdot Inlat baight -0 EEm

Pond Network Model

Netherton Burn – Catchment plan

Flood plain scheme

Useful data, An estimate of the flow regime

Connecting flow to a remnant channel

Farm Pond -- at the request of the farmer!

£13K from a £20K scheme

Netherton Flood scheme - Phase I mitigation

Three-tier RAF sediment trap

- Water storage capacity $\approx 280 \text{ m}3$
- · 70 ha contributing area

RAF performance – Three-tier sediment trap

Dyke head Wallington Hall Estate (National Trust) Re-establish a wetland Add flood storage Trap nutrients

of Use - Privacy

Lower site

"Natural Based Solutions"

For floods, droughts and pollution mana

Haltwhistle July 1st

Ker-Plunk Large sediment

Perception of the problem

Modified Hydrological Flow Pathways

DTC measures

DTC measures

Ponding zones

Improving farming conditions

Three-tier RAF sediment trap – The ditch of the future

- Water storage capacity $\approx 280 \text{ m}3$
- 70 ha contributing area

EA 3D Buffers Report Best Use of Buffer zones

Buffer Strip 3D Structure (canopy⇔landform surface⇔vegetation⇔soil⇔roots⇔deeper soil water)

So what is happening and what is the impact of policy decisions and management?

Figure 2 The 'treatment train' approach

Examples of holding water measures and

their placement

Sustainable Drainage Features: swales, bunds, ponds and grassy filters.

Buffer Strips: where designed to hold water.

The 'Ditch of the Future': the prime location for holding water and recovering lost top soil through erosion.

Small Headwater Floodplains: storing water, recreating wetlands, woodland, woody debris and new habitats.

The 5% Future 5% of land out of production And

5% of floodplains for temporary flood storage

http://research.ncl.ac.uk/proactive/5future/